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2 Representation of real numbers 
In order to simulate systems, we must be able to store and manipulate real numbers; however, most real numbers 

have non-terminated and non-repeating fractional component, and even calculations with integral values will 

quickly result in infinite repeating decimal  number; for example,  

3.1415929203539823008849557522123893805309734513274336283185840707964601769911504424778761061946902654867256637168
355

113
 . 

We cannot use rational numbers as approximations, as these quickly explode, as well: 

355 723 433504

113 991 111983

433504 502 488418954

111983 997 111647051

488418954 302 510902727460

111647051 977 109079168827

 

 

 

 

Each calculation approximately doubles the number of digits that must be stored, and thus on a computer, would 

approximately double the number of bits required. 

Instead, we should consider the scientific notation that was introduced in secondary school science classes: 

The electric charge e is approximately 1.6021766208 × 10−19 C. 

This number stores an eleven-decimal-digit approximation of the electric charge e. The components of this number 

include a significand1 of  1.6021766208 and an exponent of –19. The significand is a real number on the interval 

[1, 10) and if the significand contains n digits, we say that the representation contains n digits of precision. For 

example, the above approximation of e contains 11 significant digits. 

To store such a number on a computer, however, requires us to use a fixed number of digits. We will look at two 

examples: 

1. a human-readable six-decimal-digit floating-point representation, and 

2. the double-precision floating-point format. 

However, prior to the first, we will review scientific notation and the benefits thereof, and prior to the second, we 

will review binary numbers and binary arithmetic. 

  

                                                           
1 This is often called the mantissa; however, as this number contains the most significant digits of the number, 

significand is more appropriate. 
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2.1 Fixed-precision representations of real numbers 
Suppose you are required to store any number using only six decimal digits: 

NNNNNN 

As an integer, this could store numbers between 0 and 999999, or one million different integer values. 

Another possibility would be to insert a decimal place; for example, we could insert a fixed decimal in the 

representation; for example, NNNNNN represents the real number nnn.nnn. In this case, the smallest non-zero and 

largest numbers we can represent are: 

1. 000001 which equals 0.001, and 

2. 999999 which equals 999.999. 

The range of non-zero numbers stored in this manner is 0.001 up 999.999, which generally isn’t very large. Such a 

representation is referred to as a fixed-point representation of real numbers. 

Such fixed-point representations do have a few applications; for example, they are often used in embedded systems, 

where integer data types are used to approximate real numbers (integer calculations are faster, and some 

microcontrollers may not even have a floating-point unit (FPU). For example, rate-monotonic scheduling can 

schedule n periodic tasks, each with possibly different periods pk and requiring ak units of time per period, if 

1

1 2
n

k

k k

a

p

 
  

 
 . In this case, it is easier to store the utilization  k

k

k

a
u

p
  as a binary integer bbbbbb···b where this 

represents the utilization 0. bbbbbb…b and to then perform calculations with these integers. For example, if we were 

using short (16 bits) to store these integers, and a task required 137 ms each minute, the utilization would be 

0.000000001001010110100011111110011111111000··· which could be stored (rounding up) as the 16-bit number 

0000000010010110 which represents 0.0000000010010110. 

There are two serious drawbacks with a fixed-point representation: 

1. The range is not significant; in this example, there are only six orders of magnitude between the smallest 

and largest non-zero numbers that can be represented. 

2. The real number 0.0015 must be represented as either 0.001 or 0.002 (000001 or 000002), depending on 

how you chose to round the value. In either case, the relative error of the approximation is 

0.0005
100% 33%

0.0015
  , so there are real numbers in the range [0.001, 999.999] that can only be represented 

with a very large relative error. Similarly, the value 0.0005 could be represented either by 000000 or 

000001. Either representation has a relative error of 
0.0005

100% 100%
0.0005

  . On the other hand, 999.9985 

could be represented by either 999998 or 999999, and in each case, the relative error is 

0.0005
100% 0.00005%

999.9985
  . 

Thus, there is small range, and the maximum relative error depends inversely on the magnitude of the number being 

stored. 

  

https://en.wikipedia.org/wiki/Rate-monotonic_scheduling
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2.2 Floating-point representations 
Let’s consider a different representation where we will harken back to scientific notation: 

. 10 eee en nnnnn n     

where whether the number is positive or negative is referred to as the sign; the digits .n nnnnn n  are referred to as 

the significand, and eee e is referred to as the exponent. Any such representation where the magnitude is affected 

by a base raised to a power is referred to as a floating-point representation, as the decimal point is allowed to “float” 

relative to the significand. We will look at a six-decimal-digit floating-point representation, followed by rounding, 

and then looking at issues with floating-point representaitons. 

2.2.1 A six-decimal-digit floating-point representation 

Restricting ourselves to just six decimal digits, we could have ±EENNNN represent the number . 10een nnn  , 

although this would only allow us to represent positive powers of 10 so we would be restricted to storing numbers 

from 0.001 to 9.999 × 1099, so we will introduce a bias in the exponent so ±EENNNN represent the number 
49. 10een nnn   . The choice of 49 is arbitrary, but gives us a useful range. Thus, we can now represent positive 

numbers from 0.001 × 10–49 to 9.999 × 1050, or over 100 orders of magnitude. Additionally, every single number on 

the range [0.001 × 10–49, 9.999 × 1050] can be written with a relative error no larger than 0.0005 or 0.05 %. 

We will introduce a few special numbers: 

Normally, the most significant digit must be non-zero. This is done to ensure that the representation is unique. But 

what happens if the exponent is already the smallest possible: 

+00MNNN 

Here, the exponent is 10–49, and you cannot get a smaller exponent. Thus, we could let M equal zero in this case: 

Representation Value Comment 

+001000 1.000 × 10–49 = 10–49 Smallest normalized positive number 

+000100 0.100 × 10–49 = 10–50  

+000010 0.010 × 10–49 = 10–51  

+000001 0.001 × 10–49 = 10–52 Smallest positive number 

 

The last number represents all numbers on the interval (0.5 × 10–52, 1.5 × 10–52). Because we allow the leading digit 

to be zero, we call all these numbers denormalized. 

Next, +000000 appears to be “0”, but in reality it represents all real numbers on the interval [0, 0.5 × 10–52] and now 

-000000 represents all real numbers on the interval [–0.5 × 10–52, 0]. Having a signed zero is useful in many cases, 

as 1/10100, while small, is never-the-less positive, and –1/10100 is small and negative. The logarithm of a small 

positive number is large and negative, but the logarithm of a small negative number is undefined. 

  



2019-04-17 

4 

 

Thus, we have our next special number: like now where we use 00 to identify denormalized numbers, we will use 

the exponent 99 to represent others: 

Representation Value Comment 

+989999 9.999 × 1049 ≈ 1050 Largest real number 

+990000   ∞ Positive infinity 

-990000 –∞ Negative infinity 

+991000 NAN Not-a-Number 

 

Because 9.9995 × 1049 rounds up to 1.000 × 1050, the floating-point infinity represents not just infinity, but all real 

numbers on the semi-infinite interval [9.9995 × 1049, ∞), while negative infinity represents all numbers on the 

interval (–∞, –9.9995 × 1049]. Thus, a calculation like +491000 ÷ +000000 will equal +990000 or infinity, while 

+491000 ÷ -000000 will equal -990000 or negative infinity. Similarly, log(+000000) will equal +990000. 

You can also get positive infinity as a result of an arithmetic computation: +989999 + +945000, as this results in 

9.9995 × 1049, which rounds up and not down. 

The last number is used when the result of a computation is either not a real number (the logarithm of a negative 

number), so log(-000000) will equal +991000, indicating the result is not a number. It is also possible to get a 

result that is not a number if you have: 

a. Either zero divided by either zero. 

b. Either zero multiplied by either infinity. 

c. Either infinity divided by either zero. 

d. Either infinity divided by either infinity. 

e. Positive infinity plus negative infinity. 

f. Any arithmetic operation involving NAN. 
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For example, 

1. 1.0005 is represented by either 1.000 or 1.001, each having a relative error of approximately 0.00049975 or 

0.049975 %; and 

2. 9.9995 is represented by either 9.999 or 10.00, each of which has a relative error of approximately 

0.0000500025 or 0.00500025 %. 

Now, there is one issue with our representation: all four representations +491000 (
49 491.000 10  ), 

+500100 (
50 490.100 10  ), +510010 (

51 490.010 10  ) and +520001 (
52 490.001 10  ) represent the value 

01.000 10 1  ; the representation is not necessarily unique. We can ensure the representation is unique if we require 

that the leading digit in the significand is non-zero: ±EEMNNN where M ≠ 0. 

Thus, simply by looking at two such representations, 123456 and 598235, we see that the numbers they represent 

must be different because the digits are different. It is not necessary to convert the first to 3.456 × 10–37 and the 

second to 8.235 × 1010 to see that they are different.  

There is even one greater benefit: we can also compare the relative magnitudes simply by comparing the relative 

magnitudes of the integer representations: the number represented by +123456 must be less than the number 

represented by +598235, because 123456 < 598235. Again, it is not necessary to first determine which numbers 

these represent. 

Problems 
1. Represent the following real numbers in our six-decimal-digit representation: 

a.   3.957   (+493957) 

b. –19310   (-531931) 

c.   22420000  (+562242) 

d. –8001000000000  (-618001) 

e.   0.004275  (+464275) 

f. –0.0000000008426 (-398426) 

2. What numbers are represented by the following? 

a. +495840  (  5.840 × 100) 

b. -514180  (–4.180 × 102) 

c. +477450  (  7.450 × 10–2) 

d. -189265  (–9.265 × 10–31) 

e. +981023  (  1.023 × 1049) 

f. -292946  (–2.946 × 10–31) 

3. Up to this point, what are the smallest and largest positive numbers that can be stored exactly in this 

representation, and what are those representations? 

(+001000 equal to 1.000 × 10–49 and +999999 equal to 9.999 × 10–50)  
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2.2.2 The best representation and rounding 
When a real number is written in scientific notation, such as 

1 2 3 4 5 6. 10en n n n n n   

with n1 ≠ 0, we will describe the decimal digit nk as the kth significant digit. The digit n1 is also sometimes referred to 

as the most significant digit. For example, the first 500 significant digits of  are 

3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132823

066470938446095505822317253594081284811174502841027019385211055596446229489549303819644288109756659334461284756482337

867831652712019091456485669234603486104543266482133936072602491412737245870066063155881748815209209628292540917153643

678925903600113305305488204665213841469519415116094330572703657595919530921861173819326117931051185480744623799627495

673518857527248912279381830119491 

and the 2nd significant digit is ‘1’ as is the 500th significant digit. When using or storing numbers, we are often 

forced to store a fixed number of digits. The number  

1 2 3 4 5 6. 10e

mn n n n n n n   

is said to hold m significant digits of precision. Thus, the numbers 

53.92 10 , 
165.928 10  and 

124.982017346 10  

hold 3, 4 and 10 significant digits of precision (the number of significant digits being independent of the exponent). 

Suppose we want to store  to m significant digits. In this case, the goal is to find that number holding m significant 

digits that has the smallest relative error as an approximation to ; for example, approximating  to 10 significant 

digits gives us one of two choices 3.141592653 or 3.141592654. The relative error of the first is                                          

1.88 × 10–10 while the relative error of the second is 1.31 × 10–10; thus the second approximation is better. 

Similarly, for example 5.3729 in our four-digit decimal representation, we could use either 495372 (5.372) or 

495373 (5.373). In this case, however, the percent relative error of these two is 0.017 % and 0.0019 %, respectively, 

and therefore clearly 495373 is the optimal representation. 

The easiest way to find the best representation is to simply round to n significant figures: 

1. If the (n + 1)st digit is 0, 1, 2, 3 or 4, truncate all digits beyond the nth digit (rounding down). 

2. If either the (n + 1)st digit is 6, 7, 8 or 9 or the fifth digit is 5 and subsequent digits are not all 0, 

truncate all digits beyond the nth digit and add one to the nth digit, which may cause a carry that 

must then be dealt with (rounding up). 

3. Otherwise, the only other situation is that the (n + 1)st digit is 5 and all subsequent digits are 0; in 

which case, both possible representations have equal relative error. In this case, we examine the nth 

digit and: 

a. If the nth digit is even, we leave it; otherwise 

b. the nth digit is odd, so increment it, which may cause a carry that must then be dealt with. 

This last rule is described as rounding towards even; meaning, if there is an equal choice, we choose that 

representation that has the nth digit being even. This 3rd rule is to prevent a bias being introduced into our 

calculations: if every time we either only rounded down or only rounded down, then over time, after many 

calculations, our final result will be biased in the direction we round. By occasionally rounding up and occasionally 

rounding down, this bias is averaged out over a large number of computations. 
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As for some examples: 

1. The value 39571.8860534 rounded to 3 digits is 3.96 × 104. 

2. The value 19.31398 rounded to 3 digits is 1.93 × 101. 

3. The value 22425170.465 rounded to 4 digits is 2.243 × 107. 

4. The value 80018.74496869 rounded to 7 digits is 8.001874 × 104. 

5. The value 0.04275001072 rounded to 3 digits is 4.28 × 10–2. 

6. The value 842.62265 rounded to 7 digits is 8.426226 × 102. 

7. The value 0.0415 rounded to 2 significant digits is 4.2 × 10–2. 

8. The value 99.9995 rounded to 5 significant digits is 1.0000 × 103 

Problems 
1. Round the following numbers to six significant digits: 

a. 1532.475  (1.53248 × 103) 

b. 72300.45  (7.23004 × 104) 

c. 350099.5  (3.50100 × 105) 

d. 4289225   (4.28922 × 106) 

e. 99999950  (1.00000 × 108) 

2.2.3 Issues with floating-point representations 
There are some serious issues with floating-point representations; for example, we see that if we add 499738 and 

453456, we are adding 9.738 × 100 and 3.456 × 10–4. Now, if you were to add these on paper, the result would be 

9.7383456 × 100; however, if we were to store this in our representation, we can only store four digits of the 

significand, so the result is 9.738 × 100 or 499738. That is, we now have the situation that 

x + y = x 

even though y ≠ 0. Another property of real numbers that we learned in secondary school is that it doesn’t matter 

what order we add a series of numbers: x + y + z = (x + y) + z = x + (y + z). However, if you try to add the following 

three numbers: 499738, -499737 and 453456. If we add the first two together, we get 461000 and adding that to 

the third number yields 461346 as we would round the mantissa 1.3456 to 1.346. If, however, we were to add the 

second and third numbers first, like above, the result would be -499737, so if you add to this 499738, the result 

would now be 461000. Now, the correct answer is 1.3456 × 10–3, so both 1.346 × 10–3 and 1.000 × 10–3 are 

approximations, but the relative error of the first is 0.0297 %, the relative error of the second is 25.7 %. 

Consequently, (x + y) + z ≠ x + (y + z) and thus we must be careful with how we add numbers. 

Problems 
1. For which of these calculations does x + y = x? Remember, you should compute the full answer first to all 

significant digits and then round the result to four significant figures. 

a. -522344 + +491802  (-522342, so yes) 

b. -069248 + +753241  (+753241, so no) 

c. +565388 + -525000  (+765388, so yes) 

d. +545000 + -582935  (-582934, so no) 

e. +513534 + +475000  (+413534, so yes) 
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2.2.4 Arithmetic with our 6-digit decimal floating-point representation 
When we add two numbers, there is an intelligent approach and a sub-optimal approach. Suppose we are adding  

573532 + 591840 

The wrong approach would be to add determine the first is 3.532 × 108 and the second is 1.840 × 1010, and to then 

add these two: 

353200000

18400000000

18753200000

   

and to then store this as 591853 (we must round to four significant digits). Instead, we could instead just consider 

the difference in the exponents and only offset the smaller number: 

59 49

59 49

59 49

0.03532 10

1.84000 10

1.87532 10









 



 

Thus, the result is 591875. If there is an additional carry, it isn’t that difficult: 

288532 + 299746 

may be calculated as 

29 49

29 49

29 49

0.8532 10

9.7460 10

10.5992 10









 



 

and so the exponent must be incremented by one to get that this is stored as 301060. 

With multiplication, it is necessary to determine the relative magnitudes of the exponents, but the calculation of the 

exponent is independent of the product of the significands. For example, in multiplying  

473532 × 531840 

we have the significands to multiply: 

3.532

1.840

6.498880

  

and then the exponent of the result is –2 + 4 = 2, so this would be stored as 516499. It may be necessary to have to 

increment the exponent if the product of the significands produces a result greater of 10 or greater: 

508197 × 566423 

which has us calculate 
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8.197

6.423

52.649331

  

and looking at the exponents, 1 + 7 + 1 = 9, so the result is 585265. 

Problems 
1. Calculate each of the following, and see if you get the same answer. 

a. +504527 + +502953 = +507480 

b. +526922 + +522199 = +529121 

c. +568002 + +569295 = +571730 

d. -493285 + -509825 = -511015 

e. +493572 × +492671 = +499541 

f. +494271 × +498234 = +503517 

g. +494271 × -498234 = -503517 

h. -463524 × -515342 = +491883 

i. -507883 × +458413 = -476632 

j. +210992 × +138390 = +000000 

k. -707883 × +858413 = no representation (why?) 

2. Suppose you have 513153 and 519354. For each of these, find the smallest floating-point number x such that x 

plus this number leaves x unchanged. Solutions: 551000 and 561000, respectively. 

3. Suppose we have 513153 and 519354. For each of these, find the largest floating-point number x such that x plus 

these numbers leaves these numbers unchanged. Solution: 474999 and 475000, respectively. 
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2.3 A review of the binary representation 
When you see the number 1024, you understand this to be 

3 2 1 01024 1 10 0 10 2 10 4 10        . 

The only reason we choose 10 is likely due to the number of digits on our hands; there really is no real benefit 

otherwise. Because 10 is the base of each of the powers, we call this representation base 10. Note, however, that 

every number has a unique representation as a sum of powers of 2, 3, 4, 5, 6, etc.: 

9 8 7 6 5 3

6 5 3 0

4 3 2 1

4 3

3 2 1 0

3 2 1 0

1000 1 2 1 2 1 2 1 2 1 2 1 2

1000 1 3 1 3 1 3 1 3

1000 3 4 3 4 2 4 2 4

1000 1 5 3 5

1000 4 6 4 6 3 6 4 6

1000 2 7 6 7 2 7 6 7

           

       

       

   

       

       

 

You can see this, from the geometric series, so taking 
1

0

1

1

n
n k

k

b
b

b









  and rearranging this, we get 

 
1

0

1 1
n

n k

k

b b b




   . 

Thus, for example, 
3 2 1 0 46 7 6 7 6 7 6 7 1 7         . If you are working in base b, then you require b different 

digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 works well for base 10 and 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ,  works well for base 12. In a 

computer, however, digits must be stored as voltages, and having 10 or 12 different voltage levels is actually a very 

difficult, complicated and expensive design. Instead, it is easier to have two voltage levels: normally chosen to be 

0 V and 5 V. This would allow for two digits, so base 2 is the appropriate choice. 

We will now 

1. describe the binary representation of both integers and real numbers, and 

2. describe arithmetic operations with binary numbers. 
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2.3.1 Binary representations 
In base 2, the digits are represented usually as 0 and 1. Like base 10, when you run out of digits for one power of 2, 

you increment the next power of 2; thus, the representation of the integers 0 through 17 are: 

 0          1          2          3          4          5          6          7          8          9        10        11        12        13        14        15        16        17 

  0          1        10        11      100      101      110      111    1000    1001    1010    1011    1100    1101    1110    1111  10000  10001 

To convert a number in base 2 to base 10, you simply multiply out the powers: 

7 4 2 010010101 1 2 1 2 1 2 1 2

128 16 4 1

149

       

   



  

Now, when it isn’t clear, to differentiate between 10 being “2” in binary or “ten” in decimal, it is customary to put 

the base as a subscript, so 1012 is 510 and 10110 is 11001012. 

Problems 
Determine the values of the following numbers in binary: 

a. 1112 = 710 

b. 100012 = 1710 

c. 100002 = 1610 

d. 110112 = 2710 

e. 1001102 = 3810 

f. 1010102 =4210 

g. 1011002 = 4410 

h. 10111001012 = 74110 

i. 10111110112 = 76310 

j. 101000100102 = 129810 
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2.3.2 The best representation and rounding 
When a real number is written in scientific notation using binary, such as 

1 2 3 4 5 6. 2eb b b b b b   

with b1 ≠ 0, we will describe the decimal binary digit (bit) bk as the kth significant bit. The bit b1 is also sometimes 

referred to as the most significant bit. For example, the first 500 significant bits of  are 

11.001001000011111101101010100010001000010110100011000010001101001100010011000110011000101000101110000000110111000001

110011010001001010010000001001001110000010001000101001100111110011000111010000000010000010111011111010100110001110110

001001110011011001000100101000101001010000010000111100110001110001101000000010011011101111011111001010100011001101100

111100110100111010010000110001101100110000001010110000101001101101111100100101111100010100001101110100111111100001001

101010110110101101101010100011100 

and the 2nd significant bit is ‘1’ as is the 498th significant bit. When using or storing numbers, we are often forced to 

store a fixed number of bits. The number  

1 2 3 4 5 6. 2e

mb b b b b b b   

is said to hold m significant bits of precision. Thus, the numbers 

51.10 2 , 
1611.01 2  and 

121.001011001 2  

hold 3, 4 and 10 significant bits of precision, respectively. 

Suppose we want to store  to m significant bits. In this case, the goal is to find that number holding m significant 

bits that has the smallest relative error as an approximation to ; for example, approximating  to 10 significant bits 

gives us one of two choices 11.00100100 or 11.00100101. The relative error of the first is 3.08 × 10–4 while the 

relative error of the second is 9.35 × 10–4; thus the first approximation is better. 

The easiest way to find the best representation is to simply round to n significant bits: 

1. If the (n + 1)st bit is 0, truncate all digits beyond the nth bit (rounding down). 

2. If the (n + 1)st bit is 1and at least one subsequent bit is not all 0, 

truncate all bits beyond the nth bit and add one to the nth bit, which may cause a carry that must 

then be dealt with (rounding up). 

3. Otherwise, the only other situation is that the (n + 1)st bit is 1 and all subsequent bit are 0; in which case, 

both possible representations have equal relative error. In this case, we examine the nth digit and: 

a. If the nth bit is 0, we leave it; 

b. otherwise, the nth bit is 1 so we add 1 which will cause a carry that must then be dealt with. 

This last rule is described as rounding towards even; meaning, if there is an equal choice, we choose that 

representation that has the nth bit being 0. Like with decimal digits, this 3rd rule is to prevent a bias being introduced 

into our calculations: if every time we either only rounded down or only rounded down, then over time, after many 

calculations, our final result will be biased in the direction we round. By occasionally rounding up and occasionally 

rounding down, this bias is averaged out over a large number of computations. 
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As for some examples: 

a. The value 10101.100001 rounded to 3 bits is 1.01 × 24. 

b. The value 11.00111 rounded to 3 bits is 1.10 × 21. 

c. The value 10111001.101 rounded to 4 bits is 1.100 × 27. 

d. The value 10010.000111101 rounded to 7 bits is 1.001000 × 24. 

e. The value 0.011010000101 rounded to 3 bits is 1.11 × 2–2. 

f. The value 101.00111 rounded to 7 bits is 1.010011 × 22. 

g. The value 0.0101 rounded to 2 significant bits is 1.1 × 2–2
. 

Problems 
1. Round the following numbers to six significant digits: 

a. 1001.111  (1.01000 × 23) 

b. 11011.01  (1.10110 × 24) 

c. 111110.1  (1.11110 × 25) 

d. 1011011   (1.01110 × 26) 

e. 11111110  (1.00000 × 28) 
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2.3.3 Arithmetic with binary numbers 
When adding two numbers, it is like addition in base 10: 

 1 1 1 1     1              1 1   

10001101010011

111101001001

11001010011100


  

As an exercise, add the following binary numbers and see if you get the given result: 

1. 1000010110 + 110011111 = 1110110101 

2. 111010001 + 111001011 = 1110011100 

3. 1101100101 + 110111010 = 10100011111 

4. 1101001000 +   10110100 = 1111111100 

5. 111000010 + 100001001 = 1011001011 

6. 10111 + 101110000010 = 101110011001 

7. 111001001001 + 101110111011 = 1101000000100 

8. 10001011011010 + 11101 = 10001011110111 

Like decimal numbers, we can also have a radix point (not a decimal point) to indicate the start of negative powers 

of 2, so 

1 0 1 2 357.496 5 10 7 10 4 10 9 10 6 10            . 

A binary number with a radix point has a similar interpretation: 

1 0 1 2 3 411.1011 1 2 1 2 1 2 0 2 1 2 1 2

2 1 0.5 0.125 0.0625

3.6875

              

    



 

When adding two binary numbers with radix points, we do the same as we do with decimal numbers: we line up the 

points and proceed to add. Thus, if we are adding 10001101.010011 + 111101.001, we line up the radix points and 

add the corresponding columns: 

 1 1 1 1     1                        

10001101.010011

111101.001

11001010.01

000

1011


 

Thus, we have that 141.296875 + 61.125 = 202.421875. 

As an exercise, add the following binary numbers and see if you get the given result: 

1. 100001.011 + 11001.1111 = 111011.0101 

2. 111.010001 + 111.001011 = 1110.0111 

3. 11011001.01 + 1101110.1 = 101000111.11 

4. 110.1001000 + 1.01101 = 111.11111 

5. 11100.001 + 10000.1001 = 101100.1011 

6. 0.010111 + 101110.00001 = 101110.011001 
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7. 11100.1001001 + 10111.0111011 = 110100.00001 

8. 100010.11011010 + 0.00011101 = 100010.11110111 

Binary multiplication is similar to decimal multiplication: the multiplicand is multiplied by each digit of the 

multiplier, and these products are added: 

81476

235

407380

24442 0

00

8

162952

19146860





         

101011

101

101011

00000 0

00

0

101011

11010111





 

When summing, you must remember that 1 + 1 + 1 = 11, 1 + 1 + 1 + 1 = 100, etc. Here is a slightly more difficult 

multiplication; however, while working through this on your own, you should realize that this is something that 

should be quite easy to implement in hardware: 

0

000

10010011011

11010011

10010011011

10010011011

10010011011

10010011011

10010011011

111

0

000

1001

000

00

01111

000

00

0

01

0

00





 

Recall that when multiplying real numbers, you counted the number of decimal places in both the multiplicand and 

the multiplier, and you added that many decimal places in the product: 

7.924

185.6

4.7544

39.620

633.92

792.4

14

0

00

70.

000

6944





 

The same holds for multiplying real numbers represented in binary: 

1.101

100.1

.1101

110.1

111.0101

000





 

and we see that 1.625 × 4.5 = 7.3125 and the binary representation of 7.3125 is 111.01012. 
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Problems 
1. Calculate each of the following, and see if you get the same answer. 

a. 11 × 10 = 110 

b. 101 × 11 = 1111 

c. 100 × 10 = 1000 

d. 101 × 111 = 100011 

e. 1000 × 111 = 111000 

f. 1111 × 1000 = 1111000 

g. 111100 × 101 = 100101100 

h. 10101 × 10111 = 111100011 

i. 11101 × 11010 = 1011110010 

j. 110110 × 11001 = 10101000110 

k. 101.110 × 10000.00 = 1011100.00000 

l. 10.010 × 1011011.1 = 11001101.1110 

m. 1.11100 × 1.011011 = 10.10101010100 

n. 1.0010000 × 1.11011 = 10.000100110000 
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As an exercise, multiply the following binary numbers and see if you get the given result: 

1. 10 × 1.1 = 11 

2. 1.01 × 1.1 = 1.111 

3. 110 × 1.11 = 1010.1 

4. 10.1 × 1.01 = 11.001 

5. 0.111 × 1.11 = 1.10001 

6. 11.11 × 0.01011 = 1.0100101 

7. 0.110 × 0.011101 = 0.01010111 

8. 1.1 × 111.11 = 1011.101 

9. 101.1 × 10.1101 = 1111.01111 

10. 101100 × 1.0111 = 111111.01 

11. 1.010010 × 1110.111 = 10011.00001111 

12. 1.1 × 0.110111 = 1.0100101 

13. 0.0011110011 × 0.00100101 = 0.000010001100011111 

14. 1100.0011 × 11000110 = 100101101101.001 

2.4 The double-precision floating-point representation 
In the computer, we do not use decimal digits (although some of the first computers did). Instead, the computer uses 

binary. The double-precision floating-point representation is analogous to the above 6-decimal-digit floating-point 

representation, only it uses 64 bits instead of six decimal digits. Those bits represent the following: 

1. The first bit represents the sign: 0 for positive numbers, and 1 for negative numbers. 

2. The next 11 bits represents the exponent, and the bias is 01111111111 which equals 1023. Eleven bits can 

represent values between 0 and 2047, so by default, the exponent that is stored could be as large as 

2047 – 1023 = 1024, and as small as 0 – 1023 = –1023. In reality, the exponent 0 and the exponent 2047 

are reserved for other purposes, so the possibly multipliers go from 2–1022 = 2.225 × 10–308 up to 

21023 = 8.988 × 10308. There are two exponents that are considered special: all zeros and all ones, or 

00000000000 and 11111111111. If the exponent is either of these, do not calculate with them as if they 

were normal exponents, instead, see the following sections on zero, infinity and not-a-number. 

3. The remaining 52 bits store the significand. Recall that we required the leading digit in the significand to be 

non-zero; however, the only non-zero binary number is 1, so we won’t even store this leading one: we will 

assume it is there in our representation. 

Consequently,  

0100000000001001001000011111101101010100010001000010110100011000 

represents the number 

1.1001001000011111101101010100010001000010110100011000 × 21024 – 1023 

and this equals 1.5707963267948965 × 2 = 3.141592653589793, or the best possible approximation of  using the 

double-precision floating-point format. 
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The number 1, 2, 3, 0.5, and 0.625 are represented as  

1.0000000000000000000000000000000000000000000000000000 × 21023 – 1023 

1.0000000000000000000000000000000000000000000000000000 × 21024 – 1023 

1.1000000000000000000000000000000000000000000000000000 × 21024 – 1023 

1.0000000000000000000000000000000000000000000000000000 × 21022 – 1023 

1.0100000000000000000000000000000000000000000000000000 × 21022 – 1023 

so these would be stored as  

0011111111110000000000000000000000000000000000000000000000000000 

0100000000000000000000000000000000000000000000000000000000000000 

0100000000001000000000000000000000000000000000000000000000000000 

0011111111100000000000000000000000000000000000000000000000000000 

0011111111100100000000000000000000000000000000000000000000000000 

 

Now, how would you store 42.3125? 

Very often we will write floating-point numbers in hexadecimal, where we group the bits into groups of four, and 

then substitute each grouping of four bits with the corresponding hexadecimal number. 

 1.0 3ff0000000000000  –1.0 bff0000000000000 

 2.0 4000000000000000  –2.0 c000000000000000 

 3.0 4008000000000000  –3.0 c008000000000000 

 0.5 3fe0000000000000  –0.5 bfe0000000000000 

 0.625 3fe4000000000000  –0.625 bfe4000000000000 

 

You may wish to either memorize, or be able to quickly write out this table: 

0    1    2    3    4    5    6    7    8    9    a    b    c    d    e    f 
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 

One issue this author runs into is remembering that while ‘0’, ‘2’, ‘4’, ‘6’, ‘8’ are even, it is ‘a’, ‘c’ and ‘e’ that are 

even as hexadecimal numbers even if they are the 1st, 3rd, and 5th letters of the alphabet. This author uses the phrase 

“ace even” as an aide-mémoire to recall quickly that these are even digits. 

2.4.1 Zero 
There are two exponents that are not used to represent special floating-point numbers. The first is when all the bits 

of the exponent are zero. If all the bits in the significand are zero, too, then this represents +0: 

 0 0000000000000000 

If the sign bit is 1, this represents a –0: 

 –0 8000000000000000 

In elementary school, you learned that –0 = 0, so why are there two different zeros for floating-point numbers? The 

justification is that a floating-point zero does not represent the mathematical zero, but rather, it represents all real 

numbers that are too small to be represented by any other floating-point number. Thus, +0 represents all real 
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numbers on the range [0, ) where  is the smallest real number representable by a non-zero floating-point number, 

and –0 represents all numbers on the range (– , 0]. 

Not required for this course, but if any of the bits of the significand are non-zero, this represents denormalized 

numbers. You will recall that previously we required the most significant bit of the significand is “1”; so 

000000000001bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb 

represents the number 

1.bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb × 2–1022 

as 1 – 1023 = –1022. 

2.4.2 Denormalized numbers 
Recall that the smallest non-zero positive number is 

  0010000000000000 1.0000000000000000000000000000000000000000000000000000 × 21 – 1023 = 2–1022 

If the exponent is zero, like before, this represents a denormalized number with a leading 0, but with the same 

exponent as the smallest normalized number: 

  000xxxxxxxxxxxxx 0.bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb × 2–1022 

For example,  

  00000306a00510e2 0.0000 0000 0011 0000 0110 1010 0000 0000 0101 0001 0000 1110 0010 × 2–1022 

                                                                          = 1.10000011010100000000001010001000011100010 × 2–1033 

Thus, the smallest non-zero and positive double-precision floating point number is  

  0000000000000001 0.0000000000000000000000000000000000000000000000000001 × 2–1022 

                                                                          = 1.10000011010100000000001010001000011100010 × 2–1074 

where –1022 – 52 = –1074. 

Therefore, this smallest number represents all real numbers on the range (0.5 × 2–1074, 1.5 × 2–1074), and therefore the 

positive floating-point zero 0000000000000000 represents all real numbers on the range [0, 0.5 × 2–1074].  
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2.4.3 Infinity and not-a-number 
When you perform integer division in C or C++ and you perform a division-by-zero exception, this will by default 

terminate the program. You can try this with 

#include <iostream> 
 
int main(); 
 
int main() { 
    int a{0}; 
    int b{0}; 
    int c{a/b}; 
 
    return 0; 
} 
 

On Linux, the run-time error message when executing this program is: 

 Floating point exception (core dumped)  

For floating-point numbers, it is much more likely that divisions by zero may occur, and thus the representation 

itself contains both positive and negative infinity: 

  ∞ 0111111111110000000000000000000000000000000000000000000000000000 7ff0000000000000 

–∞ 1111111111110000000000000000000000000000000000000000000000000000 fff0000000000000 

 

Now, if you were to calculate 1/0, you would get ∞, while 1/∞ equals zero. Similarly, 1/–0 = –∞ and vice versa. The 

reason for a –0 is that 0 does not represent just 0, but rather, it represents every real number that cannot be 

represented as any other double-precision floating-point number. Thus, it represents an interval around zero. +0 

represents small numbers that are positive, while –0 represents small numbers that are negative. 

A second possibility is that a calculation is indeterminant. For example, what is 0/0, ∞ – ∞ or ∞/∞? These are 

represented by a special floating-point number 

  nan 0111111111111000000000000000000000000000000000000000000000000000 7ff8000000000000 

 

There are special properties of nan: nan is not equal to nan, but it is also not not-equal no nan. Almost all arithmetic 

operations with nan result in a nan.  

Reminder: If the sign and exponent bits are 000, 800, 7ff or fff, the double must not be interpreted in the usual 

way. Instead, it is either a zero, a denormalized number, infinity, or not-a-number. 
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2.4.4 float versus double 
There is a second floating-point representation, namely float, which comes from the single-precision floating-

point representation. It only uses four bytes, of which 8 bits are for the exponent and 23 are for the significand: 

seeeeeeeebbbbbbbbbbbbbbbbbbbbbbb 

This represents the number 

1.bbbbbbbbbbbbbbbbbbbbbbb × 10eeeeeeee – 01111111 

The bias is 127, so using the same design of the double, this allows us to represent numbers as large as 1.7 × 1038 

with the smallest denormalized float being 2–150, which is approximately 7.0 × 10–46. Because the exponent crosses a 

boundary of a hexadecimal character, it isn’t even possible to easily read off the exponent and the significand from 

the hexadecimal representation. The precision of this format is so poor that it should never be used for any scientific 

or engineering computations. It is best used for graphics, where even gross errors are often overlooked by the 

observing human eye. 

You do not have to understand the representation of float for this course. This section is for informational 

purposes only. 

2.4.5 Arithmetic with double-precision floating-point numbers  
When performing arithmetic with binary numbers, we will consider addition and multiplication; however, the 

operations are very similar to that of our 6-digit decimal representation: 

When adding two floating-point numbers, we will assume that neither number nor the result is either infinity or not-

a-number, as these may be dealt with as special cases. Suppose, for example, we are adding these two doubles: 

424921c000000000 

4245e10000000000 

In binary, these are 

0100001001001001001000011100000000000000000000000000000000000000 

0100001001000101111000010000000000000000000000000000000000000000 

Both exponents are the same, so we need only consider the addition of the significands: 

1.10010010000111

1.0101111

10.1011000

000

000

0100

1011

   

Thus, the result must have one higher exponent, and is stored as 

0100001001010101100000010110000000000000000000000000000000000000 

 

Note that we incremented the exponent by 1. In hexadecimal, this would be 

4255816000000000 

and 425 is one greater in as a hexadecimal number than 424. 

Note that 3ff00…0 equals 1, so 3ff00…0 × 3ff00…0 = 3ff00…0. 
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Suppose, for example, we are multiplying these two doubles: 

3fd9000000000000 

4045000000000000 

In binary, these are 

0011111111011001000000000000000000000000000000000000000000000000 

0100000001000101000000000000000000000000000000000000000000000000 

We determine that the exponent of the first is –2, while the exponent of the second is 5: 

2

5

2 5

1.1001 2

1.0101 2

10.00001 1 210



 



 



  

and 3 410.00001101 1.000001101002 20    and 3ff + 4 = 403. Thus, this is stored as 

0100000000110000011010000000000000000000000000000000000000000000 

 

In hexadecimal, this would be 

4030680000000000 

Here are some exercises in addition of doubles: 

1. 404f000000000000 + 404f000000000000 = 405f000000000000 

2. 3f67000000000000 + 3f5c000000000000 = 3f72800000000000 

3. 6442000000000000 + 6466000000000000 = 646a800000000000 

4. 34ae000000000000 + 342c000000000000 = 34ae1c0000000000 

5. 401f500000000000 + 3fda700000000000 = 40207b8000000000 

6. 43e0900000000000 + 444d900000000000 = 444dd24000000000 

7. 40be000000000000 + c0ba000000000000 = 4090000000000000 

8. bed0000000000000 + 3ec4000000000000 = beb8000000000000 

Here are some exercises in multiplication of doubles: 

1. 3ffd000000000000 × 3ffb000000000000 = 4008780000000000 

2. 4015000000000000 × 400f000000000000 = 4034580000000000 

3. 4030000000000000 × 3fb0000000000000 = 3ff0000000000000 

4. 4010000000000000 × 3fb7000000000000 = 3fd7000000000000 

5. 4008000000000000 × 3fd5555555555555 = 3ff0000000000000 

6. 4026000000000000 × c01c000000000000 = c053400000000000 

7. bfbc000000000000 × 4032000000000000 = bfff800000000000 

8. bfe7000000000000 × bfd7000000000000 = 3fd0880000000000 
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2.5 Summary of representations of real numbers 
In this topic,   
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